Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:
En el estudio de las funciones reales de variable real, si consideramos el punto , nos interesa el comportamiento de cuando se toma el opuesto . Puede suceder que obtenga el mismo resultado que , en cuyo caso se trata de una función par. También puede suceder que para , se obtenga de modo que el resultado no es el mismo que el de , en cuyo caso se trata de una función impar. En el aspecto geométrico la no variación de al cambiar a , revela simetría de la gráfica de respecto al eje Y. La variación de a al reemplazar por , indica simetría respecto al origen de coordenadas. Entre las funciones reales hay funciones pares, impares y que no asumen ninguno de los casos mencionados. Por ejemplo , no es par ni impar, ya que no podemos definir esta función para números reales negativos. [1]
Las funciones pares e impares son usadas en muchas áreas del análisis matemático, especialmente en la teoría de las series de potencias y series de Fourier.
En matemáticas, la gráfica de una función es un tipo de representación gráfica que permite conocer intuitivamente el comportamiento de dicha función. Más formalmente dada una función:
el gráfico es el conjunto de todos los pares ordenados (x, f(x)) de la función f, es decir, como un subconjunto del producto cartesiano X×Y. Se representa gráficamente mediante una correspondencia entre los elementos del conjunto dominio y los del conjunto imagen.
Las únicas funciones que se pueden establecer de forma no ambigua mediante líneas, son las de una sola variable, con un sistema de coordenadas cartesianas, donde cada abscisa representa un valor de la variable del dominio y cada ordenada representa el valor correspondiente del conjunto imagen. Si la función es continua, entonces la gráfica formará una línea recta o curva. En el caso de funciones de dos variables es posible visualizarlas de forma unívoca mediante una proyección geométrica, pero a partir de tres variables tan solo es posible visualizar cortes (con un plano) de la función para los que los valores de todas las variables, excepto dos, permanezcan constantes. Algunos software de representación usan además colores, o curvas de nivel lo cual se puede lograr una representación satisfactoria.
El concepto de gráfica de una función se generaliza a la gráfica de una relación. Notar que si bien cada función tiene una única representación gráfica, pueden existir varias funciones que tengan la misma, pero con dominios y codominios diferentes.